
Mark scheme

Question Answer/Indicative content Marks Guidance

1

2 marks max per group

• Meaningful identifiers / meaningful variable
names

• …to describe/show what they store /
purpose of variable

• An example of a meaningful variable
identifier for this algorithm

• Comments
• …to make it easier for other programmers

to follow / understand (part of) the code /
explains what the code does / easier to
debug

• An example of a suitable comment for this
algorithm

• Use of subroutines
• …to reuse blocks of code / make code

easier to follow
• An example of a subroutine for this

algorithm
• Use of constants
• …to store data that will not change (during

program execution) / so data can be
changed in one place only

• An example of a constant for this algorithm
(e.g. store 512 as a constant)

4
(AO2)

Do not accept "what variables do"
– incorrect verb, variables
store/hold data.

BOD notes (and alternatives) for
comments. Do not allow
instructions.

Do not allow indentation (already
done in program given)

Allow whitespace / blank lines
(same expansions as comments)

Do not award expansion without
being clear which method is being
discussed. “Makes it easier to
understand” by itself is TV.

Examiner’s Comments

It was pleasing that the majority of
candidates understood the term
maintainability and were able to
suggest suitable improvements on
a generic level, such as improving
the naming of variables and adding
comments. Better responses that
achieved full marks were able to
apply this to the code given, such
as suggesting more suitable
variable names.

Candidates who suggested adding
indentation were not credited with
marks as this has clearly already
been done in the code given and
thus would not be an improvement.

Key point – generic versus.
context driven responses

Where a question gives a context
or scenario (such as data or a

2.3 Producing robust programs PhysicsAndMathsTutor.com

program being given), it is
important that candidates refer to
this context in their response if
they are hoping to achieve full
marks. For this question, the
question text was:

 ‘Describe two ways to
improve the maintainability of this
algorithm’

This is a very different question
from ‘Describe two ways to
improve the maintainability of an
algorithm’ where a generic
response would suffice.

 Total 4

2 a i

• String
• Integer
• Real / Float

3
(AO3)

Accept alternative equivalent
correct data types (e.g.
single/double/decimal for BP3)

Do not accept char for BP1

Examiner’s Comments

This question was completed very
well by the vast majority of
candidates, showing that the use
of data types are now well
understood by centres.

 ii

• theTeam.length() - 1 / 5
• count
• studentName
• True

4
(AO3)

Accept 6 / theTeam.length()
for BP1 (Python).

Accept alternative length functions
e.g. len()

Accept count = 5 (and
equivalents) for BP1. Accept "True"
for BP4.

Do not allow obvious spaces in
variable names.

Ignore capitalisation.

Examiner’s Comments

This was a challenging question
revolving around the use of an

2.3 Producing robust programs PhysicsAndMathsTutor.com

array that is iterated through to
implement a linear search. Many
candidates achieved two marks for
the first and last points,
understanding that the loop would
repeat from indexes 0 to 5 and that
the value True would be returned
if the item was found. As usual,
allowance was given for off-by-one
errors with this loop because of the
prevalence of Python in centres
and how loops are count controlled
loops are handled in this language.

It was far less common for
candidates to achieve the middle
two marks, perhaps because the
level of technical knowledge
needed was greater. A number of
candidates attempted here to
fashion a 2D array and refer to
multiple indexes, but this was not
appropriate given the data
structure given. The most
challenging mark was certainly the
use of count as the index of the
theTeam array, with very few
candidates correctly identifying this
as the missing element.

Assessment for learning

Centres are encouraged to link the
topics of arrays (both single and
two-dimensional) to count
controlled loops to be confident in
answering questions like this one.

A very common programming
exercise is to iterate through every
item in an array, either to search for
an item, count or add items or as
the pre-cursor for a search.
Candidates are expected to have
significant practical programming
experience over the duration of
their studies.

2.3 Producing robust programs PhysicsAndMathsTutor.com

 b

• javelinThrow set to 14.3 on line 01 and
yearGroup set to 10 on line 02

• score set to 2 on line 06
• score set to 4 on line 11
• "The score is 4" output on line 13 with no

additional outputs (allow input statements)

Example

Answer may include lines where no changes or
output happens (i.e. lines 3, 4, 5, 7, 8, 9, 10, 12).

Where variable doesn't change, current value may
be repeated on subsequent lines.

4
(AO3)

Max 3 if in wrong order or
additional (incorrect) changes.
Penalise line numbers once then
FT.

Allow FT for BP4 for current value
of score.

BP4 must not include comma.
Ignore superfluous spaces. Ignore
quotation marks.

Treat any entry in output column
as an output, even if "x", "-" or "0".

Examiner’s Comments

Trace tables have appeared
multiple times in J277 examination
papers now and candidates are
hopefully familiar with the
expectations, which are consistent
across series.

Most candidates correctly traced
through the given algorithm, which
was more accessible than usual
due to not containing any loops.
Where mistakes were made, this
was typically to do with either
incorrect line numbers being given
for each change (this was
penalised once only and then
subsequent mistakes with line
numbers followed through) or
additional incorrect output being
given.

Candidates should be encouraged
to simply leave boxes blank if no
output is given on a particular line.
If (for example) ‘x’ is written,
examiners are unsure whether the
candidate meant no output or the
letter ‘x’ should be output. This
ambiguity would mean that no
mark could be given.

 c i
• inputs a value from the user and

stores/uses
• checks min value (>= 40.0 / < 40)

4
(AO3)

Answers using AND/OR for BP2
and BP3 must be logically correct
e.g. if height >=40 and

2.3 Producing robust programs PhysicsAndMathsTutor.com

• checks max value (<=180.0 / > 180)
• …outputs both valid / not valid correctly

based on checks

Example 1 (checking for valid input)
h = input("Enter height jumped")
if h >= 40 and h <= 180 then
print("valid")
else
print("not valid")
endif

Example 2 (checking for invalid input)
h = input("Enter height jumped")
if h < 40 or h > 180 then
print("not valid")
else
print("valid")
endif

height <=180. Do not accept if
height >=40 and <=180

Answers using OR will reverse
output for BP4 (see examples).

BP4 needs reasonable attempt at
either BP2 or BP3. Need to be
sure what is being checked to be
able to decide which way around
valid/invalid should be.

Allow FT for BP4 if reasonable
attempt at validating (must include
at least one boundary)

Ignore conversion to int on input.
input cannot be used as a
variable name.

Greater than / less than symbols
must be appropriate for a high-
level language / ERL. Do not
accept => (wrong way around) or >
(not available on keyboard). No
obvious spaces in variable names.
Penalise once and then FT.

Examiner’s Comments

This question was done very well
by the majority of candidates, with
multiple ways of achieving the
marks possible.

One common problem was
consistent with Question 3 (b), as
again multiple conditions could be
evaluated using a single if
statement. Candidates needed to
refer to their input value for each
comparison if they were to achieve
full marks. Another common
problem was with the boundaries
used; the tests must check 40 to
80 inclusive (for valid response) to
be marked as correct. Obviously, if
an input on these boundaries
would produce the wrong output
then full marks could not be given.

2.3 Producing robust programs PhysicsAndMathsTutor.com

One final common problem
involved the use of greater than or
equal to signs (and also less than
or equal to). The common signs
used in mathematics are not
available on a typical keyboard and
so would not be allowed in Section
B of this paper. Instead, >= or <=
should be used, and these should
be the correct way around.

 ii

• Any normal value (between 40 and 180
inclusive)

• 40.0 / 180.0
• Any value less then 40 / any value greater

that 180 / any non-numeric value

3
(AO3)

No need to include decimals, e.g.
accept 50. Ignore cm if given.

Answer must be actual data (e.g.
50) and not description of data
(e.g. "a value between 40 and
180"). If descriptions given, do not
accept this as non-numeric for BP3

 d

• TeamName only in first space
• TblResult in second space
• WHERE
• …YearGroup = 11

4
(AO3)

Max 3 if not in correct order /
includes other logical errors.

Ignore capitals.
Do not accept * or additional fields
for BP1

Spelling must be accurate (e.g. not
TblResults).

No spaces in field names, penalise
obvious spaces once and then FT.
Allow quotation marks around field
names, table name and 11

Accept == for BP4 (invalid SQL but
works in some environments)

Examiner’s Comments

A number of candidates struggled
with this question. Problems
included spaces in field names,
misspelling of the table name
(such as TblResults plural when
TblResult singular was given) or
misunderstanding of the WHERE
clause.

Allowance was given where ==
was used for comparison and

2.3 Producing robust programs PhysicsAndMathsTutor.com

examiners were instructed to allow
this (as this is used for comparison
in high-level languages such as
Python), although this is incorrect
as defined in the most recent ANSI
SQL standards.

 e i

• any example of simplification / removing
data or focussing on data (in the design)

Examples :
- “focus on student names and events”
- “ignore data such as students’ favourite subjects”
- “store year groups instead of ages or DOB”
- “shows student IDs instead of full student details”

1
(AO3)

Must be applicable to this program
(in the context of students and a
sports day), not a generic
description of what abstraction is.
Give BOD where this is unclear.

Examiner’s Comments

Both questions here asked about
abstraction and decomposition of
the sports day program. As
explained previously in this report,
where a scenario or context is
given, candidates are expected to
use this context. No marks were
given by examiners for generic
definitions of what the term
abstraction or decomposition
means.

Abstraction in the sports day
program could have been for
focusing on anything sensible
(such as event names) or
removing/ignoring anything
sensible (such as showing student
IDs instead of names). Where the
context of the sports day was
used, candidates were generally
successful in achieving this mark.

Decomposition use was more
tricky to correctly identify, as many
candidates simply referred to how
already separate data was stored.
Where this extended to true
decomposition (such as breaking
down data into multiple tables,
splitting up event data, etc.) this
was credited but the average
candidate fell short here. A much
more successful approach was to
discuss the decomposition of the
program, such as having a

2.3 Producing robust programs PhysicsAndMathsTutor.com

separate algorithm for each event.
Candidates attempting this angle
of response did very well.

Examiners were instructed for both
questions to be generous in
deciding whether candidates had
indeed referred to the sports day
context.

 ii

• any example of breaking down the
program into sections/subroutines

• any example of breaking down the
database into tables

Examples :
- “splits the program up into different events”
- “separates the validation routines into
subroutines”
- “breaks the database down into a table per event”

1
(AO3)

Must be applicable to this program,
not a generic description of what
decomposition is. Give BOD where
this is unclear.

Do not give answers discussing
splitting into fields (e.g. split into
StudentID, YearGroup, etc).

BOD if answer discusses one table
but suggests other tables could be
used.

Do not give answers relating
simply to data being split into
smaller groups unless this clearly
relates to how data is decomposed
into tables in the DB.

Allow reference to sports day to
mean sports day program.

Examiner’s Comments

Both questions here asked about
abstraction and decomposition of
the sports day program. As
explained previously in this report,
where a scenario or context is
given, candidates are expected to
use this context. No marks were
given by examiners for generic
definitions of what the term
abstraction or decomposition
means.

Abstraction in the sports day
program could have been for
focusing on anything sensible
(such as event names) or
removing/ignoring anything

2.3 Producing robust programs PhysicsAndMathsTutor.com

sensible (such as showing student
IDs instead of names). Where the
context of the sports day was
used, candidates were generally
successful in achieving this mark.

Decomposition use was more
tricky to correctly identify, as many
candidates simply referred to how
already separate data was stored.
Where this extended to true
decomposition (such as breaking
down data into multiple tables,
splitting up event data, etc.) this
was credited but the average
candidate fell short here. A much
more successful approach was to
discuss the decomposition of the
program, such as having a
separate algorithm for each event.
Candidates attempting this angle
of response did very well.

Examiners were instructed for both
questions to be generous in
deciding whether candidates had
indeed referred to the sports day
context.

 f

• Input team name AND score and store / use
separately

• Attempt at using iteration…
• …to enter team/score until "stop" entered
• Calculates highest score
• Calculates winning team name…
• …Outputs highest score and team name

Example 1
highscore = 0
while team != "stop"
team = input("enter team name")
score = input("enter score")
if score > highscore then
highscore = score
highteam = team
endif
endwhile
print(highscore)
print(highteam)

Example 2 (alternative)

6
(AO3)

For BP3, allow "stop" to be entered
for either team name or score (or
both). Allow third input (e.g. "do
you wish to stop?")

Allow use of break (or equivalent)
to exit loop for BP3.

Allow use of recursive function(s)
for BP2/3.

Initialisation of variables not
needed - assume variables are 0
or empty string if not set.

Ignore that multiple teams could
get the same high score, assume
only one team has the highest
score.

BP4/5 could be done in many ways
– see examples. Allow any

2.3 Producing robust programs PhysicsAndMathsTutor.com

scores = []
teams = []
while team != "stop"
team = input("enter team name")
score = input("enter score")
scores.append(score)
teams.append(team)
endwhile
highscore = max[scores]
highteam =
teams[scores.index(highscore)]
print(highscore)
print(highteam)

logically valid method. Allow use of
max/sum functions and use of
arrays/lists.

FT for BP6 if attempt made at
calculating highest score/name

If answer simply asks for multiple
entries (not using iteration), BP2
and 3 cannot be accessed but all
others available.

For minor syntax errors (e.g.
missing quotation marks or == for
assignment, spaces in variable
names) penalise once then FT.

input cannot be used as a
variable name.

Examiner’s Comments

The final question in Section B is
expected to be challenging and
this proved to be the case,
although again was perhaps more
accessible than previous papers'
final questions.

Marks were available for inputs
(one mark) and correctly iterating
over as required (two marks), with
these three marks proving to be
the easiest to achieve. The next
three marks required significant
processing in terms of calculating
the highest score and team name
from multiple values entered by the
user. The vast majority of
candidates simply kept a running
‘highest score’ and updated this on
each iteration. Where this was
attempted, it was mostly
successful. Other candidates
attempted more complex solutions,
including adding data to arrays and
then calculating highest values;
where this was done successfully,
this of course achieved full marks
but frequently small logic mistakes
meant that not all marks were

2.3 Producing robust programs PhysicsAndMathsTutor.com

given. Centres should encourage
candidates to keep their responses
simple and not produce over-
elaborate solutions if a simpler
alternative is available.

A common mistake was where
candidates attempted to use loops
in the style of for x in list : .
In this case, the variable x is a
reference to an item in the array
and not an index. It would
therefore not be appropriate to try
to access list[x] later in the
code.

A significant number of candidates
were able to create a solution that
fully met the requirements of the
question, doing so in an elegant
and efficient manner. This is
extremely pleasing and show
excellent understanding, produced
from excellent teaching and
significant amounts of practical
programming experience.

Exemplar 3

The candidate response shown
here achieved six out of six marks.
Both the name and score are input
as required, with this being inside a
while loop. Perhaps
unconventionally (but acceptably),
the candidate has used a break
command to end the loop (which
otherwise is infinite) upon stop
being entered. This could have
been more elegantly rewritten as

2.3 Producing robust programs PhysicsAndMathsTutor.com

while name != ‘stop’ but this
would not have achieved any
further marks.

Within the loop, the candidate uses
two variables to keep track of the
current highest score and
associated team, before printing
these out in a message once the
loop has ended.

 Total 30

3 a

Max 1 mark for definition that is clearly different
from a logic error.

• (an error that) breaks the rules/grammar of
the programming language

• Stops the program from running / does not
allow program to run / crashes the program
/ does not allow program to translate

Suitable example for 1 mark, e.g.

• misspelling key word (e.g. printt instead
of print)

• Missing / extra symbol (e.g. missing
bracket, missing semicolon)

• Mismatched quotes
• Invalid variable or function names (e.g.

variable starting with a number or including
a space)

• Incorrect use of operators
• Use of reserved keywords for variables (e.g.

print = 3)
• Incorrect capitalisation of keywords (e.g.

Print instead of print)
• Incorrect indentation (of code blocks)
• Missing concatenation (e.g. print(score

x))

2
(AO1)

BOD code/program etc for BP1

Do not allow answers linked to
data types.

"incorrect grammar" by itself is NE

Do not allow “stop working”, "does
not work", etc – TV.

Do not accept missing quotation
marks e.g. print(hello) (could
be a variable name)

BOD given code that could cause
a syntax error in a high-level
language.

Examiner’s Comments

This question firstly asked for a
definition of the term ‘syntax error’.
Although many candidates were
correctly able to do this in terms of
rules of the programming language
being broken, many instead gave
examples of issues that would
cause syntax errors, such as
‘where a bracket is missing’. This
would indeed cause a syntax error
in many high-level languages but is
not a definition in general and so
was not credited by examiners for
this part of the question.

The second part did ask for an
example and generous
interpretation was asked of

2.3 Producing robust programs PhysicsAndMathsTutor.com

examiners so that any issue that
could feasibly cause a syntax error
was awarded, such as missing
brackets or misspelling of key
words. One common
misconception here involved
missing quotation marks/string
delimiters around a string, which
could instead be a reference to a
variable if this was a single word.

Misconception

A syntax error is a mistake with the
rules/grammar of the programming
language that means the program
will not run/execute or compile.

Code such as print(temp)
would not necessarily be a syntax
error because temp could plausibly
be a variable.

 b

1 mark each

• line 03
• total = num1 + num2

• Line 04
• if total >= 10 and total <=20

then

Allow other logical equivalent code e.g. total =
int(num1) + int(num2) if 10 <= total
<= 20

4
(AO3)

Allow other logical corrections that
will fix the problem identified and
does not introduce any further
errors.

Allow descriptions of changes as
long as clear exactly what will
change. Do not allow ambiguous
descriptions of changes to code.

Ignore missing then from line 04.

Ignore capitalisation.

Examiner’s Comments

Line 03 was commonly identified
as containing a logic error and
many candidates were able to
correct this. Where a candidate
attempted to explain what changes
should be made, this was only
credited where the explanation
was unambiguous and precise.

2.3 Producing robust programs PhysicsAndMathsTutor.com

The correction to line 04 was
commonly done incorrectly due to
the need to check multiple values.

Misconception

Where multiple values are required
to be checked in a selection
statement, a line such as :

if total >= 10 and <= 20
then

is incorrect as the second part of
the statement has nothing to
compare 20 against. The first part
will clearly evaluate to true or false,
but the second part is ambiguous.
Instead, candidates should be
encouraged to use :

if total >= 10 and total
<= 20 then

Alternatives that work in high-level
languages would also obviously be
accepted.

Exemplar 1

Although this candidate has
correctly identified lines 03 and 04,
the correction for line 04 is
incorrect due to the missing
reference to total when comparing
the upper boundary. This achieves
three marks out of four.

 Total 6

4 Only 1 method asked for. Could be name and
description/example or description and example

2
(AO1)

Allow validation / input sanitisation
/ passwords as expansion of

2.3 Producing robust programs PhysicsAndMathsTutor.com

• Authentication
• …checking users allowed to access the site

/ know identity of users
• …by example (e.g. username and

password)
• Anticipating misuse / preventing misuse
• …stopping the user breaking / hacking into

the system
• …by example (e.g. restricting entry to

integers)
• Validation
• …check / only allow sensible data to be

entered / check data is sensible
• …by example (e.g. restrict ratings to 1 to 10

/ presence check / format check)
• Input sanitisation
• …removing invalid/special characters
• …by example (e.g. remove quotation marks

/ semicolons)
• Maintainability
• …ensuring program is able to be

understood by others
• …by example (e.g. modularisation /

comments)

anticipating misuse.

Allow mark for description with no /
incorrect name

Allow any 2 points from mark
scheme as long as clearly linked to
a single defensive design method.

Examiner’s Comments

The specification (Section 2.3.1)
lists multiple ways that defensive
design could be used in a program
and any of these, plus other
sensible options, were allowed as
an acceptable response. The
describe command word then
required candidates to add further
detail to obtain a second mark, in
this case by describing how it
could be used, either generically or
as a specific example. Many points
on the mark scheme crossed over
with each other, such as a
validation example being a
sensible expansion for anticipating
misuse, and hence two marks
were able to be obtained in
multiple ways.

 Total 2

5

One mark per bullet point

• Any value between 0 and 20 (e.g. 4)
• True
• Invalid / erroneous / sensible alternative
• False

4
(AO3
2c)

Experience

in years
Type of test

Expected

output

4 Normal True

20 Boundary True

32 Erroneous/Invalid False

 Total 4

6 a 1 mark each:
Syntax error

2
(AO1
1a)

Question asks for a definition.
Examples may strengthen the
response but are not acceptable by

2.3 Producing robust programs PhysicsAndMathsTutor.com

• Error in the rules/grammar (of the program
language).

• Program does not (fully) run / translate /
execute / start (BOD)

Logic error

• Produces incorrect / unexpected
result/output

• Program runs/does not crash

themselves.

Do not allow “error/problem in the
code, does not work / does not do
what designed/intended to do” for
either, this applies to both.

“Error in the syntax” or “error in the
logic” are NE even with examples

Examiner’s Comments

This question was answered
extremely well by most candidates.
These candidates correctly defined
the terms given.

Candidates must understand that
an example is not the same as a
definition. For example, a
misspelling of a command such as
print would of course be a
syntax error but this is not a
definition; many other issues would
cause a syntax error.

Other incorrect responses included
generic responses that could apply
to either term, for example: "a
mistake in the program" or "where
the computer doesn't understand
the code".

 b

Line number

• 02

Correction

• for scoreCount = 0 to
scores.length - 1

Line number

• 03

Correction

• total = scores[scoreCount] +
total

4
(AO3
2c)

1 mark for each line number
correctly identified.
1 mark for each correction.
Correction must match line
number.

If wrong line number, do not mark
correction. If no line number, mark
correction only.

Do not penalise if response
removes –1 from scores.length
as long as it starts at 0.

Do not penalise potential off by 1
errors for looping (Python).

Do not penalise case or minor

2.3 Producing robust programs PhysicsAndMathsTutor.com

• total = total +
scores[scoreCount]

• total += scores[scoreCount]

spelling errors as long as intention
is clear.

Allow description of change that
would be made (e.g. “change 1 to
0”)

First correction is fixing indexing
error so element 0 is included. This
could be done on line 03 e.g.
scores[scoreCount-1].
Second correction is fixing addition
of total.

If both errors fixed on line 03, full
marks should be given. e.g.
total = total +
scores[scoreCount-1]

Examiner’s Comments

This proved to be a relatively
challenging question for many
candidates. This question relied on
an understanding of the term "logic
error".

Two errors were present:

• line 02 (where the count-
controlled loop ignored
element 0 in the array)

• line 03 (where the total was
incorrectly calculated and
stored).

Many responses identified at least
one of the line numbers containing
the error. Far fewer were able to
successfully fix the errors
satisfactorily.

Examiners were instructed to be
generous in interpreting potential
fixes. The errors in either case
could have been fixed using OCR
Exam Reference Language (as
presented) or using any other
sensible form. Responses using
programming syntax were credited,
as were those who simply used

2.3 Producing robust programs PhysicsAndMathsTutor.com

English, e.g. “change the 1 to a 0
on line 02”.

Instructions were also included in
the mark scheme to allow full
marks for candidates who fixed the
errors in one step on line 03.

 Total 6

7 a i

1 mark each to max 2

• Check the program works (as intended)
• meets user requirements.
• gives the correct output / result
• Find / detect / check for errors / bugs
• Check the program does not crash / is

robust / executes / runs
• To try and break the program / destructive

testing
• Test for / improve usability / user experience

/ performance / check user feedback is
suitable

• Allow any errors to be fixed / make changes
/ improvements as a result of testing

• Ensure no problems / issues fixed when
released.

• Defensive design considerations /
anticipating misuse / so cannot be misused

2
(AO1
1b)

Allow answers that explain what
would happen if not tested (e.g.
“there might be bugs”)

Examiner’s Comments

Testing as a process could be
done for many reasons. The mark
scheme attempts to credit as many
sensible explanations for this as
possible. This includes testing to
find errors, checking for robustness
and checking against user
requirements. Furthermore, fixing
errors that are found is also
credited as this could form part of
the testing process.

The majority of responses
demonstrated an understanding of
this and achieved highly.

 ii

1 mark for name, 1 mark for matching description

e.g.

• Final / terminal testing…
• … Completed at the end of development /

before release.
• … to test the product as a whole.
• Iterative / incremental testing…
• …completed during development.
• …after each module is completed.
• … test module in isolation
• Normal testing…
• …test using data that should be accepted /
• …test that is expected to work / pass
• Boundary / Extreme testing…
• …test using data that is on the edge of

being acceptable / unacceptable.
• …test highest / lowest value
• Invalid / Erroneous testing…

2
(1

AO1
1a)
(1

AO2
1b)

Allow other sensible descriptive
names for testing.

Description must match test type.

Must be a description and not just
an example, but example may
support description.

Do not accept descriptions that
simply repeat type of test without
further clarification (e.g. “boundary,
testing the boundary”).

Allow :

• Black box testing…
• …testing without access /

knowledge of a system’s
workings.

2.3 Producing robust programs PhysicsAndMathsTutor.com

• …test using data that should be rejected /
is not acceptable / causes an error

• White box testing…
• …testing with access /

knowledge of system’s
workings.

Allow other sensible / valid types of
testing.

Do not accept examples of
validation (e.g. type test, range
check)

“data that is not expected” is NE for
invalid/erroneous unless clarified.

Examiner’s Comments

The J277 specification lists iterative
and final/terminal testing as test
types. However, many candidates
interpreted this question as asking
about test data (such as normal or
erroneous data). Where candidates
described the use of test data and
link it to expected outcomes, this
was credited by examiners.

Other types of suitable testing that
do not appear on the J277
specification (such as white
box/black box testing, alpha/beta
testing) were also accepted.

Assessment for learning

The J277 specification states the
minimum content that candidates
are expected to know and
understand at GCSE level.
However, it is possible for teachers
to go beyond this.

For example, iterative and
final/terminal testing are stated in
the specification. However, there
are other types of testing. Other
technically correct responses will
be accepted by examiners even if

2.3 Producing robust programs PhysicsAndMathsTutor.com

they do not appear in this
specification.

Another example is sorting
algorithms. Merge sort, bubble sort
and insertion sort appear in the
specification. However, when
candidates have been asked to
name sorting algorithms, previous
mark schemes credit other valid
responses (such as quick sort,
selection sort or bogo sort).

 iii

1 mark for feature
1 mark for matching description
e.g.

• Translator / compiler / interpreter …
• … convert to low-level/machine code
• …allow program to be executed / run
• …produce executable file (only for compiler)
• …stops execution when error found

(interpreter only)
• Run-time environment / output window…
• …allows program / code to be run /

executed
• …shows output of the program / code
• Error reporting / diagnostics
• … identify location/detail of errors
• …suggests fixes
• Debugger …
• …find errors
• Stepping …
• … execute/run the program line by line
• Variable watch…
• … see the contents/data held in variables
• Break points …
• … will allow the program to stop at a

chosen / set position
• Text/code editor…
• …allows program code to be written /

entered / changed
• …allows errors to be fixed
• Pretty printing / keyword highlighting…
• … allows keywords / variables to be

coloured / identified
• Keyword completion / syntax suggestion…
• …suggests code/syntax when first part

entered.

4
(AO2
1b)

Allow other sensible names for
features.

Description must add more than is
given in the identification of the
feature to be awarded. For
example, “keyword highlighting,
highlights keywords” is 1 mark for
the feature only.

If compiler and interpreter given as
two distinct features, allow both
(with suitable descriptions). Do not
allow translator and
compiler/interpreter.

Description must match feature.

“finding errors” is NE for
description of error reporting.

Allow sensible references to AI
where appropriate. Sensible
description of use needed.

Allow other sensible features of an
IDE (e.g. line numbering, auto
indent, collapsed blocks, etc) with
suitable description.

For text editor / error diagnostics /
debugger, allow other sensible
features listed as features in the
mark scheme as description (e.g.
“text editor, provides pretty
printing”, “debugger, provides
stepping”)

2.3 Producing robust programs PhysicsAndMathsTutor.com

Examiner’s Comments

This question was generally well
answered with a variety of features
given. The question specifically
asks about features used when
testing a program. Therefore,
features such as debugging tools,
stepping and variable watch
windows were very common
responses.

However, more general responses
were also accepted, such as text
editors, translators, and keyword
completion. These could all
potentially be used when editing
programs after errors had been
identified.

Less successful responses tended
to be descriptions that simply
repeated the name of the feature
given. For example "debugging
tools, to allow debugging" would
gain 1 mark for the feature
identification but not the
description.

 b

1 mark for method, 1 mark to max 2 for each use

e.g.

• Range check
• … checks upper/max / lower/min /

boundaries
• … make sure the players answer / input is

between sensible limits (e.g. 20 or less,
between 2 and 20 inclusive) / not negative

• …by example of program code
• Type check
• … making sure the data inputted is of the

correct data type
• … make sure answer / input is an integer

(or equivalent e.g. whole number)
• Presence check
• … making sure a value is inputted / not

blank
• … reference to answer / input
• …by example of program code
• Length check

6
(4

AO2
1b)
(2

AO1
1a)

Validation must be applied to the
rules of the game as given; do not
accept uses related to input not
asked for (e.g. names, passwords,
etc).

Do not accept uses that simply
repeat the name of the check (e.g.
“range check, checks a range of
numbers”)

For range check, values must be
sensible (e.g. 1 to 50), and allow
input of 2 to 20. Do not allow 1 / 10
(answer could be over this).

For length check, must be clear
that the string version of the data
input is being checked to award
use marks (e.g. characters not
digits).

2.3 Producing robust programs PhysicsAndMathsTutor.com

• … limit number of characters / check
maximum / minimum string length

• … answer / input must be 1 or 2
characters

• …by example of program code
• Format check
• … making sure the data inputted follows a

set pattern
• … checking answer / input consists of only

1 or 2 numeric digits
• …by example of program code
• Look up / table check
• … making sure the data inputted is one

from an allowed set of values
• … checking that answer / input is one of

[2, 3…20] inclusive
• …by example of program code

Accept alternative names or
descriptions (e.g. existence check,
boundary check) but name of
check must be sensible.

Mark each answer as a whole,
ignore method/use headings.

Do not accept defensive design
elements (e.g. input sanitisation,
authentication)

Examples of program code can be
actual code (e.g. if inp>=2 and
inp<=20) or identification of
technique (e.g. “use IF statement /
Case statement to limit values to
between 1 and 20”). Do not accept
code just showing casting.

Examiner’s Comments

Responses which focused on the
explicit link to the game described
in this question tended to do well.

The stronger responses stated a
validation method and linked the
use of the validation method to the
game. For example, a requirement
of the game is that two random
numbers between 1 and 10 are
picked. It is sensible to suggest
that validation ensuring the total is
between 2 and 20 could be
implemented. Further discussion
relating to how this could be done,
even as far as suggesting sensible
high-level code that could be used
would have developed the
response.

Some candidates gave examples
of validation which did not clearly
link to the game. Generic
examples were partially credited.
Explicit links to the game were
required in order to gain all marks
available.

2.3 Producing robust programs PhysicsAndMathsTutor.com

Misconception

Input validation applies to values
input by the user. In this case, the
requested input is the sum of two
numbers, each of which are
between 1 and 10. It is not
necessary to validate the random
number generation (as this has not
been input) and it would be
inappropriate to limit user inputs to
between 1 and 10; the total could
easily be (for example) 8 + 6 = 14.

Where candidates suggested
validating inputs to allow between 1
and 10, not all marks available
were given due to this
misconception.

 Total 14

8

1 mark for each row

Variable
Boole

an

Ch

ar

Stri

ng

Integ

er

Re

al

UserName ✓

EmergencyPhoneN

umber
 ✓

DoorSensorActiv

e
✓

DoorActiveTime ✓

4
(AO3
2a)

No mark if more than 1 tick on a
row.

Allow other indications of choice
(e.g. cross) as long as clear.

 Total 4

9 i
• Convert/change one data type to another
• Line 03 / 3 / three

2
(AO1
1b)

(AO2
2b)

Do not accept "change to string” -
this is the use in this example but
not a definition.

Examiner’s Comments

Many candidates correctly defined
casting as changing data from one
data type to another. Some
candidates defined this term as

2.3 Producing robust programs PhysicsAndMathsTutor.com

changing a variable from an integer
to a string, which is only one
example of what can be done and
not a definition.

The majority of candidates then
gave the correct line number (line
03) for there this was shown the
example code given.

 ii

• Kofi2021 as staffID on line 03
• Kofi2021x as staffID on line 05
• Kofi2021xx as staffID on line 05
• ID Kofi2021xx output on line 07 as first and

only output

4
(AO3
2c)

Max 2 if incorrect order. Ignore
misspelling of Kofi

Penalise lack of / errors with line
numbers once then FT. Ignore
capitalisation. Ignore additional
lines unless outcome impacted.

staffID does not have space in.
Output does have a space in.
Penalise spaces once then FT. Do
not penalise unless obvious.

Quotes around answer is OK, but
do not allow quotes around partial
answers, e.g. “ID” Kofi2021xx
is incorrect.

Line

numb

er

surna

me

yea

r
staffID Output

01 Kofi

02
 202

1

03
 Kofi2021

05
 Kofi2021

x

05
 Kofi2021

xx

07

ID

Kofi2021

xx

Examiner’s Comments

This question asked candidates to
trace through a given algorithm to

2.3 Producing robust programs PhysicsAndMathsTutor.com

show the value of three variables at
various points in the algorithm.

The algorithm itself was relatively
simple. It used condition-controlled
iteration to repeat while the length
of the username was less than 10
characters.

Most candidates gained the first 2
marks for the initial changes to
staffID. However few candidates
were able to trace through the
iteration and conclude that the final
username should end up as ID
Kofi2021xx.

Marking this question considered
the spaces within the username at
various points. The algorithm
results in one space only, in
between ID and Kofi2021xx.
Where extra spaces appeared or
were missed, this was penalised.
However, examiners were
instructed to give clear benefit of
doubt, and to only do this if the
space was clearly present/missing.

It is important to understand that
“ab” and “a b” are two strings that
are not the same. This level of
precision should be encouraged
within GCSE Computer Science.
Experience of practical
programming will help reinforce the
impact of spaces within
programming and algorithms.

 Total 6

10

Any two bullet points for one mark each:

• Add comments
• Name variables sensibly
• Put into subroutine / procedure / function
• Use loop / iteration

2
(AO2
1b)

Do not accept indentation (no code
to sensibly indent in this example)

“Use a subroutine” is not enough.
Must be clear that existing code will
be put into a new subroutine.

Examiner’s Comments

This question asked about

2.3 Producing robust programs PhysicsAndMathsTutor.com

maintainability. It was important
that a candidate’s response
referred to the code given.

“Give two ways that maintainability
of a program could be improved” is
a different question than the one
asked.

Because of this, responses that
were accepted must genuinely
improve the maintainability of the
program shown. One very common
wrong response was indentation;
although this would be useful
generically, there was no code
presented that would benefit from
being indented.

Many candidates were able to give
responses such as use of
comments and sensibly named
variables that would genuinely
improve the given program. Where
candidates described putting the
given code inside a newly defined
subroutine. This response was
credited. However some responses
simply said “use a subroutine”. This
was not enough.

 Total 2

11 i

• Checks that both firstname and
surname are not empty…

• Checks that room is either “basic” or
“premium”…

• Checks that nights is between 1 and 5
(inclusive)…

• …Outputs “NOT ALLOWED” (or equivalent)
if any of the 3 checks are invalid (must
check all three)

• …Outputs “ALLOWED” (or equivalent) only
if all three checks are valid (must check all
three)

Note : output marks are given for if entire system
produces the correct output. For example, If a user
enters a valid name and room but an invalid
number of nights, the system should say “NOT
ALLOWED” (or equivalent). If this works and

5
(AO3
2a)

Must have some attempt at all
three checks to give output
mark(s). Check for nights must
check both upper and lower limits.

Iteration can be used as validation
if input repeatedly asked for until
valid answer given.

Do not accept logically incorrect
Boolean conditions such as if
firstname or surname == “”

Do not accept ≥ or ≤ for >=, <=.
Ignore capitalisation

e.g.

2.3 Producing robust programs PhysicsAndMathsTutor.com

produces the correct response no matter which
input is invalid, BP4 should be given.

The same process holds for the valid output - if
(and only if) three valid inputs results in an output
saying “ALLOWED” (or equivalent), BP5 should be
given. Do not give this if ALLOWED is printed when
(for example) two inputs are valid and one is
invalid.

For any output marks to be given, a sensible
attempt must have been made at all three checks.
These may not be completely correct (and may
have been penalised in BPs 1 to 3) but should be
enough to allow the FT marks for output.

valid = True
if firstname == “” or
surname == “” then
 valid = False
end if
if room != “basic” and
room != "premium" then
 valid = False
endif
if nights < 1 or nights >
5 then
valid = False endif
 if valid then
print(“ALLOWED”)
else
 print(“NOT ALLOWED”)
endif

BP1 to 3 can check for valid or
invalid inputs. . Pay particular
attention to use of AND / OR. Only
give marks for output if these work
together correctly.

Example above shows checking
for invalid data. Checks for valid
data equally acceptable Examples
shown below:

• if firstname != “”
and surname != “”

• if room == “basic” or
room == “premium”

• if nights >= 1 and
nights <= 5

Examiner’s Comments

This question stretched the
understanding of even highly-
achieving candidates and it was not
uncommon to see low scoring
responses.

Misunderstanding of Boolean
operators (AND and OR) within
selection (IF) statements was
something that affected a lot of
candidate responses.

2.3 Producing robust programs PhysicsAndMathsTutor.com

As this question was in Section B,
candidates needed to respond in
OCR Exam Reference Language
or a high-level language.
Responses must be logically
correct to gain the marks. As each
check is two individual checks that
both need to pass, responses can
quickly get relatively complicated.

As can be seen from the mark
scheme, advice and examples
were given to examiners to make
sure that candidates who were able
to successfully navigate this logic
chain were credited.

Misconception

Checking whether a room is either
basic or premium can be done in
multiple ways. Candidates can
either check for the positive (i.e.
check that it is either basic or
premium) or check that for the
negative (i.e. check whether it is
something else). However, there
are many common errors that were
seen :

• IF room == “basic” or
“premium” is incorrect
as the second part of the
statement is not evaluated
against anything. This was
perhaps the most common
mistake.

• IF room == “basic” or
room == “premium” is
correct and checks for
validity.

• IF room == basic or
room == premium is
incorrect as the lack of
string delimiters means that
basic and room would be
treated as variables rather
than strings.

2.3 Producing robust programs PhysicsAndMathsTutor.com

• IF room != “basic” or
room != “premium” is
also incorrect. This checks
for invalid input but because
or is used, only one
condition needs to be True
for the whole statement to
be True. This means that if
basic is entered, it would
be classed as invalid (as it
isn’t premium) and vice-
versa. There is no way for
any entry in this example to
be classes as valid.

• IF room != “basic”
and room !=
“premium” is correct.
This checks for invalid
inputs but needs both
conditions to be True.

The same explanation follows for
the other two necessary checks.

Exemplar 3

This exemplar shows a fully correct
response. The candidate checks
for invalid responses and correctly
uses Boolean operators to check
multiple criteria at each step. If any
check returns True, “Not allowed” is
printed and the program ends.
Efficient use of if … else …
means that the next check only
proceeds if the previous check
returns False.

If all three checks return False, the

2.3 Producing robust programs PhysicsAndMathsTutor.com

final else is triggered to print
“Allowed”.

It must be noted that this is only
one way of achieving full marks. An
equivalent program that checks for
valid responses at each turn would
also be possible. Candidates
should be encouraged to use
whatever structure they feel is
sensible. If a response can logically
be followed then it will achieve high
marks.

 ii

• Normal
• 1 or 5 (not 0 or 6 as says allowed)
• Any numeric value except 1 to 5 / any non-

numeric input (e.g. "bananas”)

3
(AO3
2c)

Allow other descriptions that mean
normal (e.g. valid / typical /
acceptable)

Test data

(number of

nights)

Type of test

Expected

output

2 Normal ALLOWED

1 / 5 Boundary ALLOWED

e.g. 7 Erroneous/Invalid
NOT

ALLOWED

Examiner’s Comments

This question was answered well
by the majority of candidates.

 Total 8

12 a i
• Hiding / ignoring / removing detail /

focussing on certain parts of a problem 1

 ii

• Focus on age / number of miles
• Ignore other factors (such as make, model,

etc) 1 Allow other examples of factors to
ignore / remove for BP2

 iii

• Ensures only certain users can access the
system

• Using password / other example of
authentication technique

2 Allow other examples of
authentication for BP2

 b i
1 mark per bullet, max 4

• Miles and age input separately
5

BP2 and 3 must check for both
ends of range – must check that
input data is not negative.

2.3 Producing robust programs PhysicsAndMathsTutor.com

• Checks for valid mileage
• Checks for valid age
• Checks both are greater than / greater than

equal to zero
• …correctly outputs both True and False

Allow FT for BP4 if already
penalised under BP2 and/or 3 and
output is otherwise correct.

e.g.

miles = input("enter miles
driven")
age = input("enter age of
car")
valid = True
if miles > 10000 or miles
< 0 then
 valid = False
elseif age > 5 or age < 0
then
 valid = False
endif
print(valid)

 ii

1 mark per row, max 3

• Normal : miles (0 – 9,999), age (0 - 5)
• Erroneous: miles (less than 0, larger than

9,999), age (less than 0 / more than 5) /
non-numeric data

• Boundary : miles (-1/0 / 9,999 / 10,000), age
(-1/0 / 5/6)

3

Specific data must be given, not a
description
e.g.

 Miles Age

Normal 7,000 3

Erroneous 12,000 7

Boundary 10,000 5

 iii
• During development / whilst writing the

program / before development is complete. 1

 Total 13

13 a i

One mark if two correct, two marks if four correct,
three marks if all correct.

Price input Test type Expected price output

50 Normal 50

100 Boundary 100

150 Normal 130

200 Boundary 180

3

2.3 Producing robust programs PhysicsAndMathsTutor.com

250 Normal 210

 ii

One mark per bullet point

• Input and store price
• Check if price is > 200…
• …if true, reduce price by 40
• Check if price is >100 and not >200…
• ...if true, reduce price by 20
• Output price

6

High-level programming
language / OCR Exam Reference
Language response required

Do not accept pseudocode / natural
language.

BP3 and BP5 only to be given if
sensible check for price being over
the appropriate threshold. BP4
must check that price is both larger
than 100 and not larger than 200;
do not give mark for simply
checking price is larger than 100.
This may be implicit (e.g. using
elseif).

e.g.
price = input("enter
price")
if price > 200 then
 price = price – 40
elseif price > 100 then
 price = price - 20
endif
print(price)

 b

One mark per bullet point

• checking both values (e.g. or changed to
and if appropriate)

• if statement in correct format (e.g.
checking against stocklevel for each
condition)

• if statement uses correct comparisons
(e.g. >= and <=)

• print statements in correct position
• print statements include string delimiters

(e.g. speech marks) around both string
outputs

5

High-level programming
language / OCR Exam Reference
Language response required

Do not accept pseudocode / natural
language.

e.g.

stocklevel = input("Enter
stock level")
if stocklevel >= 5 and
stocklevel <= 25 then
 print("In demand")
else
 print("Not in demand")
endif

alternative example

stocklevel = input("Enter
stock level")

2.3 Producing robust programs PhysicsAndMathsTutor.com

if stocklevel > 5 or
stocklevel > 25 then
 print("Not in demand")
else
 print("In demand")
endif

As a matter of principle, a
candidate who refines the program
to work fully but in a different
format to that specified should gain
full marks.

 Total 14

14 a i

• or
• >300 / >= 301
• print

3
(AO3
2b)

High-level programming
language / OCR Exam Reference
Language response required

Do not accept pseudocode / natural
English.

MP2 do not accept ‘greater than’,
must use the HLL syntax > or >=
MP3 must be a suitable output
command word that could be found
in a HLL e.g. print (Python),
console.writeline (VB), cout
(C++)

 ii

• Suitable invalid test data (i.e. > 300, e.g.
350)

• Suitable boundary test data (e.g. 0, 300)
• "Value accepted" or equivalent if boundary

data 0 or 300 / "Invalid input displayed" or
equivalent if boundary data -1 or 301

3
(AO3
2c)

 b

• Initialises total as 0 and prints out total the
end (as per original program)

• Uses iteration, e.g. FOR, WHILE
• …that repeats 5 times
• …correctly adds up values using loop index

e.g.
total = 0
for x = 0 to 4
total = total + hoursplayed[2, x]
next x

4
(AO3
2c)

High-level programming
language / OCR Exam Reference
Language response required

Do not accept pseudocode / natural
English.

MP1 must have appropriate
identifier, = and then the numeric 0
MP2 must have for or while
MP3 must have the for stopping
condition 4/5
MP4 must have the same identifier

2.3 Producing robust programs PhysicsAndMathsTutor.com

console.writeline(total)

e.g.
total = 0
for x in range (0, 4)
total += hoursplayed[2][x]
next x
print (total)

e.g.
total = 0;
for (int x = 0; x <= 4; x++){
total = total +
hoursplayed[2][x];
}
System.out.println (total);

for MP1 and equal and + to add the
data in the array (using either
[x,y] or [x][y]. This could be
total = total + …. Or total
+= ….

 Total 10

2.3 Producing robust programs PhysicsAndMathsTutor.com

	Mark scheme

